DataSheet.es    


PDF LP2985IM5-135 Data sheet ( Hoja de datos )

Número de pieza LP2985IM5-135
Descripción Micropower 150 mA Low-Noise Low-Dropout Regulator in SOT-23 and micro SMD packages for Applications
Fabricantes National Semiconductor 
Logotipo National Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de LP2985IM5-135 (archivo pdf) en la parte inferior de esta página.


Total 17 Páginas

No Preview Available ! LP2985IM5-135 Hoja de datos, Descripción, Manual

May 2004
LP2985LV
Micropower 150 mA Low-Noise Low-Dropout Regulator
in SOT-23 and micro SMD packages for Applications
with Output Voltages 2.3V
Designed for Use with Very Low ESR Output Capacitors
General Description
The LP2985LV is a 150 mA, fixed-output voltage regulator
designed to providehigh performance and low noise in ap-
plications requiring output voltages < 2.3V.
Using an optimized VIP(Vertically Integrated PNP) pro-
cess, the LP2985LV delivers unequalled performance in all
specifications critical to battery-powered designs:
Ground Pin Current: Typically 825 µA @ 150 mA load, and
75 µA @ 1 mA load.
Enhanced Stability: The LP2985LV is stable with output
capacitor ESR as low as 5 m, which allows the use of
ceramic capacitors on the output.
Sleep Mode: Less than 1 µA quiescent current when ON/
OFF pin is pulled low.
Smallest Possible Size: micro SMD package uses absolute
minimum board space.
Precision Output: 1% tolerance output voltages available
(A grade).
Low Noise: By adding a 10 nF bypass capacitor, output
noise can be reduced to 30 µV (typical).
Features
n Guaranteed 150 mA output current
n Smallest possible size (micro SMD)
n Requires minimum external components
n Stable with low-ESR output capacitor
n <1 µA quiescent current when shut down
n Low ground pin current at all loads
n Output voltage accuracy 1% (A Grade)
n High peak current capability
n Wide supply voltage range (16V max)
n Low ZOUT: 0.3typical (10 Hz to 1 MHz)
n Overtemperature/overcurrent protection
n −40˚C to +125˚C junction temperature range
n Custom voltages available
Applications
n Cellular Phone
n Palmtop/Laptop Computer
n Personal Digital Assistant (PDA)
n Camcorder, Personal Stereo, Camera
Block Diagram
VIPis a trademark of National Semiconductor Corporation.
© 2004 National Semiconductor Corporation DS101295
10129501
www.national.com

1 page




LP2985IM5-135 pdf
Electrical Characteristics (Note 10) (Continued)
Limits in standard typeface are for TJ = 25˚C. and limits in boldface type apply over the full operating temperature range. Un-
less otherwise specified: VIN = VO(NOM) + 1V, IL = 1 mA, CIN = 1 µF, COUT = 4.7 µF, VON/OFF = 2V.
LP2985AI-X.X
LP2985I-X.X
Symbol
Parameter
Conditions
Typ (Note 6)
(Note 6)
Units
Min Max Min Max
Ripple Rejection
f = 1 kHz, CBYPASS = 10 nF
COUT = 10 µF
45
dB
IO(SC)
Short Circuit Current
RL = 0 (Steady State)
(Note 8)
400
mA
IO(PK)
Peak Output Current VOUT Vo(NOM) −5%
350
mA
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the
device outside of its rated operating conditions.
Note 2: The ESD rating of pins 3 and 4 for the SOT-23 package, or pins 5 and 2 for the micro SMD package, is 1 kV.
Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal resistance, θJ-A,
and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperture is calculated using:
Where the value of θJ-A for the SOT-23 package is 220˚C/W in a typical PC board mounting. Exceeding the maximum allowable dissipation will cause excessive die
temperature, and the regulator will go into thermal shutdown.
Note 4: If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2985LV output must be diode-clamped to ground.
Note 5: The output PNP structure contains a diode between the VIN to VOUT terminals that is normally reverse-biased. Reversing the polarity from VIN to VOUT will
turn on this diode, and possibly damage the device (See Application Hints).
Note 6: Limits are 100% production tested at 25˚C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate National’s Average Outgoing Quality Level (AOQL).
Note 7: The ON/OFF input must be properly driven to prevent possible misoperation. For details, refer to Application Hints.
Note 8: The LP2985LV has foldback current limiting which allows a high peak current when VOUT > 0.5V, and then reduces the maximum output current as VOUT
is forced to ground (see Typical Performance Characteristics curves).
Note 9: VIN must be the greater of 2.2V or VOUT(nom) + Dropout Voltage to maintain output regulation. Dropout Voltage is defined as the input to output differential
at which the output voltage drops 2% below ther value measured with a 1V differential.
Note 10: Exposing the micro SMD device to direct sunlight will cause misoperation. See Application Hints for additional information.
5 www.national.com

5 Page





LP2985IM5-135 arduino
Application Hints
EXTERNAL CAPACITORS
Like any low-dropout regulator, the LP2985LV requires ex-
ternal capacitors for regulator stability. These capacitors
must be correctly selected for good performance.
Input Capacitor
An input capacitor whose capacitance is 1 µF is required
between the LP2985LV input and ground (the amount of
capacitance may be increased without limit).
This capacitor must be located a distance of not more than 1
cm from the input pin and returned to a clean analog ground.
Any good quality ceramic, tantalum, or film capacitor may be
used at the input.
Important: Tantalum capacitors can suffer catastrophic fail-
ure due to surge current when connected to a low-
impedance source of power (like a battery or very large
capacitor). If a Tantalum capacitor is used at the input, it
must be guaranteed by the manufacturer to have a surge
current rating sufficient for the application.
There are no requirements for ESR on the input capacitor,
but tolerance and temperature coefficient must be consid-
ered when selecting the capacitor to ensure the capacitance
will be 1 µF over the entire operating temperature range.
Output Capacitor
The LP2985LV is designed specifically to work with ceramic
output capacitors, utilizing circuitry which allows the regula-
tor to be stable across the entire range of output current with
an output capacitor whose ESR is as low as 5 m. It may
also be possible to use Tantalum or film capacitors at the
output, but these are not as attractive for reasons of size and
cost (see next sectionCapacitor Characteristics).
The output capacitor must meet the requirement for mini-
mum amount of capacitance and also have an ESR (equiva-
lent series resistance) value which is within the stable range.
Curves are provided which show the stable ESR range as a
function of load current (see ESR graphs Figure 1 and
Figure 2).
10129519
FIGURE 1. LP2985LV 2.2µF Stable ESR Range
10129520
FIGURE 2. LP2985LV 4.7µF Stable ESR Range
Important: The output capacitor must maintain its ESR
within the stable region over the full operating temperature
range of the application to assure stability.
The LP2985LV requires a minimum of 2.2 µF on the output
(output capacitor size can be increased without limit).
It is important to remember that capacitor tolerance and
variation with temperature must be taken into consideration
when selecting an output capacitor so that the minimum
required amount of output capacitance is provided over the
full operating temperature range. It should be noted that
ceramic capacitors can exhibit large changes in capacitance
with temperature (see next section, Capacitor Characteris-
tics).
The output capacitor must be located not more than 1 cm
from the output pin and returned to a clean analog ground.
Noise Bypass Capacitor
Connecting a 10 nF capacitor to the Bypass pin significantly
reduces noise on the regulator output. It should be noted that
the capacitor is connected directly to a high-impedance cir-
cuit in the bandgap reference.
Because this circuit has only a few microamperes flowing in
it, any significant loading on this node will cause a change in
the regulated output voltage. For this reason, DC leakage
current through the noise bypass capacitor must never ex-
ceed 100 nA, and should be kept as low as possible for best
output voltage accuracy.
The types of capacitors best suited for the noise bypass
capacitor are ceramic and film. High-quality ceramic capaci-
tors with either NPO or COG dielectric typically have very
low leakage. 10 nF polypropolene and polycarbonate film
capacitors are available in small surface-mount packages
and typically have extremely low leakage current.
CAPACITOR CHARACTERISTICS
The LP2985LV was designed to work with ceramic capaci-
tors on the output to take advantage of the benefits they
offer: for capacitance values in the 2.2 µF to 4.7 µF range,
ceramics are the least expensive and also have the lowest
ESR values (which makes them best for eliminating high-
frequency noise). The ESR of a typical 2.2 µF ceramic
capacitor is in the range of 10 mto 20 m, which easily
meets the ESR limits required for stability by the LP2985LV.
11 www.national.com

11 Page







PáginasTotal 17 Páginas
PDF Descargar[ Datasheet LP2985IM5-135.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
LP2985IM5-135Micropower 150 mA Low-Noise Low-Dropout Regulator in SOT-23 and micro SMD packages for ApplicationsNational Semiconductor
National Semiconductor
LP2985IM5-135Micropower 150 mA Low-Noise Low-Dropout Regulator in SOT-23 and micro SMD packages for ApplicationsNational Semiconductor
National Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar