FM31256 の電気的特性と機能

FM31256のメーカーはRamtronです、この部品の機能は「(FM3104 - FM31256) Integrated Processor Companion」です。

製品の詳細 ( Datasheet PDF )

部品番号 FM31256
部品説明 (FM3104 - FM31256) Integrated Processor Companion
メーカ Ramtron
ロゴ Ramtron ロゴ 


Total 22 pages

No Preview Available !

FM31256 Datasheet, FM31256 PDF,ピン配置, 機能
Product Preview
Integrated Processor Companion with Memory
High Integration Device Replaces Multiple Parts
Serial Nonvolatile Memory
Real-time Clock (RTC)
Low Voltage Reset
Watchdog Timer
Early Power-Fail Warning/NMI
Two 16-bit Event Counters
Serial Number with Write-lock for Security
Ferroelectric Nonvolatile RAM
4Kb, 16Kb, 64Kb, and 256Kb versions
Unlimited Read/Write Endurance
10 year Data Retention
NoDelay™ Writes
Real-time Clock/Calendar
Backup Current under 1 µA
Seconds through Centuries in BCD format
Tracks Leap Years through 2099
Uses Standard 32.768 kHz Crystal (6pF)
Software Calibration
Supports Battery or Capacitor Backup
The FM31xxx is a family of integrated devices that
includes the most commonly needed functions for
processor-based systems. Major features include
nonvolatile memory available in various sizes, real-
time clock, low-VDD reset, watchdog timer,
nonvolatile event counter, lockable 64-bit serial
number area, and general purpose comparator that
can be used for an early power-fail (NMI) interrupt or
other purpose. The family operates from 2.7 to 5.5V.
Each FM31xxx provides nonvolatile RAM available
in sizes including 4Kb, 16Kb, 64Kb, and 256Kb
versions. Fast write speed and unlimited endurance
allow the memory to serve as extra RAM or
conventional nonvolatile storage. This memory is
truly nonvolatile rather than battery backed.
The real-time clock (RTC) provides time and date
information in BCD format. It can be permanently
powered from external backup voltage source, either
a battery or a capacitor. The timekeeper uses a
common external 32.768 kHz crystal and provides a
calibration mode that allows software adjustment of
timekeeping accuracy.
This is a product in development. Characteristic data
and other specifications are subject to change without notice.
Rev 0.2
May 2003
Processor Companion
Active-low Reset Output for VDD and Watchdog
Programmable VDD Reset Trip Point
Manual Reset Filtered and De-bounced
Programmable Watchdog Timer
Dual Battery-backed Event Counter Tracks
System Intrusions or other Events
Comparator for Early Power-Fail Interrupt
64-bit Programmable Serial Number with Lock
Fast Two-wire Serial Interface
Up to 1 MHz Maximum Bus Frequency
Supports Legacy Timing for 100 kHz & 400 kHz
Device Select Pins for up to 4 Memory Devices
RTC, Supervisor Controlled via 2-wire Interface
Easy to Use Configurations
Operates from 2.7 to 5.5V
Small Footprint 14-pin SOIC
Low Operating Current
-40°C to +85°C Operation
The processor companion includes commonly needed
CPU support functions. Supervisory functions
include a reset output signal controlled by either a
low VDD condition or a watchdog timeout. /RST
goes active when VDD drops below a programmable
threshold and remains active for 100 ms after VDD
rises above the trip point. A programmable watchdog
timer runs from 100 ms to 3 seconds. The watchdog
timer is optional, but if enabled it will assert the reset
signal for 100 ms if not restarted by the host before
the timeout. A flag-bit indicates the source of the
A general-purpose comparator compares an external
input pin to the onboard 1.2V reference. This is
useful for generating a power-fail interrupt (NMI) but
can be used for any purpose. The family also includes
a programmable 64-bit serial number that can be
locked making it unalterable. Additionally it offers a
dual battery-backed event counter that tracks the
number of rising or falling edges detected on
dedicated input pins.
Ramtron International Corporation
1850 Ramtron Drive, Colorado Springs, CO 80921
(800) 545-FRAM, (719) 481-7000
Page 1 of 22

1 Page

FM31256 pdf, ピン配列
A1, A0
2.5V -
LV Detect
- 1.2V
RTC Cal.
Switched Power
RTC Registers
Battery Backed
Figure 1. Block Diagram
Pin Descriptions
Pin Name
A0, A1
CNT1, CNT2 Input
X1, X2
Pin Description
Device select inputs are used to address multiple memories on a serial bus. To select
the device the address value on the two pins must match the corresponding bits
contained in the device address. The device select pins are pulled down internally.
Event Counter Inputs: These battery-backed inputs increment counters when an edge is
detected on the corresponding CNT pin. The polarity is programmable.
In calibration mode, this pin supplies a 512 Hz square-wave output for clock
calibration. In normal operation, this is the early power-fail output.
32.768 kHz crystal connection. When using an external oscillator, apply the clock to
X2 and leave X1 floating.
Active low reset output with weak pull-up. Also input for manual reset.
Serial Data & Address: This is a bi-directional line for the two-wire interface. It is
open-drain and is intended to be wire-OR’d with other devices on the two-wire bus.
The input buffer incorporates a Schmitt trigger for noise immunity and the output
driver includes slope control for falling edges. A pull-up resistor is required.
Serial Clock: The serial clock line for the two-wire interface. Data is clocked out of the
part on the falling edge, and in on the rising edge. The SCL input also incorporates a
Schmitt trigger input for noise immunity.
Early Power-fail Input: Typically connected to an unregulated power supply to detect
an early power failure. This pin should not be left floating.
Backup supply voltage: A 3V battery or a large value capacitor. If VDD<3.6V and no
backup supply is used, this pin should be tied to VDD. If VDD>3.6V and no backup
supply is used, this pin should be left floating and the VBC bit should be set.
Supply Voltage.
Rev 0.2
May 2003
Page 3 of 22


FM31256 電子部品, 半導体
The comparator is a general purpose device and its
application is not limited to the NMI function.
The comparator is not integrated into the special
function registers except as it shares its output pin
with the CAL output. When the RTC calibration
mode is invoked by setting the CAL bit (register 00h,
bit 2), the CAL/PFO output pin will be driven with a
512 Hz square wave and the comparator will be
ignored. Since most users only invoke the calibration
mode during production, this should have no impact
on system operations using the comparator.
Note: The maximum voltage on the comparator input PFI
is limited to 3.75V under normal operating conditions.
Event Counter
The FM31xxx offers the user two battery-backed
event counters. Input pins CNT1 and CNT2 are
programmable edge detectors. Each clocks a 16-bit
counter. When an edge occurs, the counters will
increment their respective registers. Counter 1 is
located in registers 0Dh and 0Eh, Counter 2 is
located in registers 0Fh and 10h. These register
values can be read anytime VDD is above VTP, and
they will be incremented as long as a valid VBAK
power source is provided. To read, set the RC bit
register 0Ch bit 3 to 1. This takes a snapshot of all
four counter bytes allowing a stable value even if a
count occurs during the read. The registers can be
written by software allowing the counters to be
cleared or initialized by the system. Counts are
blocked during a write operation. The two counters
can be cascaded to create a single 32-bit counter by
setting the CC control bit (register 0Ch). When
cascaded, the CNT1 input will cause the counter to
increment. CNT2 is not used in this mode.
The control bits for event counting are located in
register 0Ch. Counter 1 Polarity is bit C1P, bit 0;
Counter 2 Polarity is C2P, bit 1; the Cascade Control
is CC, bit 2; and the Read Counter bit is RC bit 3.
16-bit Counter
16-bit Counter
Figure 6. Event Counter
Serial Number
A memory location to write a 64-bit serial number is
provided. It is a writeable nonvolatile memory block
Rev 0.2
May 2003
that can be locked by the user once the serial number
is set. The 8 bytes of data and the lock bit are all
accessed via the device ID for the processor
companion. Therefore the serial number area is
separate and distinct from the memory array. The
serial number registers can be written an unlimited
number of times, so these locations are general
purpose memory. However once the lock bit is set the
values cannot be altered and the lock cannot be
removed. Once locked the serial number registers can
still be read by the system.
The serial number is located in registers 11h to 18h.
The lock bit is SNL, register 0Bh bit 7. Setting the
SNL bit to a 1 disables writes to the serial number
registers, and the SNL bit cannot be cleared.
Real-Time Clock Operation
The real-time clock (RTC) is a timekeeping device
that can be battery or capacitor backed for
permanently-powered operation. It offers a software
calibration feature that allows high accuracy.
The RTC consists of an oscillator, clock divider, and
a register system for user access. It divides down the
32.768 kHz time-base and provides a minimum
resolution of seconds (1Hz). Static registers provide
the user with read/write access to the time values. It
includes registers for seconds, minutes, hours, day-
of-the-week, date, months, and years. A block
diagram (Figure 7) illustrates the RTC function.
The user registers are synchronized with the
timekeeper core using R and W bits in register 00h
described below. Changing the R bit from 0 to 1
transfers timekeeping information from the core into
holding registers that can be read by the user. If a
timekeeper update is pending when R is set, then the
core will be updated prior to loading the user
registers. The registers are frozen and will not be
updated again until the R bit is cleared to 0. R is used
for reading the time.
Setting the W bit to 1 locks the user registers.
Clearing it to 0 causes the values in the user registers
to be loaded into the timekeeper core. W is used for
writing new time values. Users should be certain not
to load invalid values, such as FFh, to the
timekeeping registers. Updates to the timekeeping
core occur continuously except when locked.
Backup Power
The real-time clock/calendar is intended to be
permanently powered. When the primary system
power fails, the voltage on the VDD pin will drop.
When VDD is less 2.5V the RTC (and event
counters) will switch to the backup power supply on
VBAK. The clock operates at extremely low current
in order to maximize battery or capacitor life.
Page 6 of 22

6 Page

ページ 合計 : 22 ページ
[ FM31256 データシート.PDF ]

データシートを活用すると、その部品の主な機能と仕様を詳しく理解できます。 ピン構成、電気的特性、動作パラメータ、性能を確認してください。


Link :


64-Kbit/256-Kbit Integrated Processor Companion

Cypress Semiconductor
Cypress Semiconductor

(FM3104 - FM31256) Integrated Processor Companion

Ramtron    |   2020   |  メール    |   最新    |   Sitemap