DataSheet.jp

BCW60DLT1 の電気的特性と機能

BCW60DLT1のメーカーはMotorola Incです、この部品の機能は「General Purpose Transistors」です。


製品の詳細 ( Datasheet PDF )

部品番号 BCW60DLT1
部品説明 General Purpose Transistors
メーカ Motorola Inc
ロゴ Motorola  Inc ロゴ 




このページの下部にプレビューとBCW60DLT1ダウンロード(pdfファイル)リンクがあります。

Total 8 pages

No Preview Available !

BCW60DLT1 Datasheet, BCW60DLT1 PDF,ピン配置, 機能
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document
by BCW60ALT1/D
General Purpose Transistors
NPN Silicon
COLLECTOR
3
BCW60ALT1
BCW60BLT1
BCW60DLT1
1
BASE
MAXIMUM RATINGS
Rating
Symbol
Collector – Emitter Voltage
Collector – Base Voltage
Emitter – Base Voltage
Collector Current — Continuous
THERMAL CHARACTERISTICS
VCEO
VCBO
VEBO
IC
Characteristic
Total Device Dissipation FR– 5 Board(1)
TA = 25°C
Derate above 25°C
Symbol
PD
Thermal Resistance Junction to Ambient
Total Device Dissipation
Alumina Substrate,(2) TA = 25°C
Derate above 25°C
RqJA
PD
Thermal Resistance Junction to Ambient
Junction and Storage Temperature
DEVICE MARKING
RqJA
TJ, Tstg
BCW60ALT1 = AA, BCW60BLT1 = AB, BCW60DLT1 = AD
Value
32
32
5.0
100
Max
225
1.8
556
300
2.4
417
– 55 to +150
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector – Emitter Breakdown Voltage
(IC = 2.0 mAdc, IE = 0)
Emitter – Base Breakdown Voltage
(IE = 1.0 mAdc, IC = 0)
Collector Cutoff Current
(VCE = 32 Vdc)
(VCE = 32 Vdc, TA = 150°C)
Emitter Cutoff Current
(VEB = 4.0 Vdc, IC = 0)
 1. FR– 5 = 1.0 0.75 0.062 in.
 2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.
2
EMITTER
Unit
Vdc
Vdc
Vdc
mAdc
Unit
mW
mW/°C
°C/W
mW
mW/°C
°C/W
°C
Symbol
V(BR)CEO
V(BR)EBO
ICES
IEBO
3
1
2
CASE 318 – 08, STYLE 6
SOT– 23 (TO – 236AB)
Min Max Unit
32 — Vdc
5.0 — Vdc
— 20 nAdc
— 20 µAdc
nAdc
— 20
Thermal Clad is a trademark of the Bergquist Company
©MMotootorroollaa,
Small–Signal
Inc. 1996
Transistors,
FETs
and
Diodes
Device
Data
1

1 Page





BCW60DLT1 pdf, ピン配列
BCW60ALT1 BCW60BLT1 BCW60DLT1
TYPICAL NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, TA = 25°C)
20
IC = 1.0 mA
300 µA
10
BANDWIDTH = 1.0 Hz
RS = 0
7.0 100 µA
5.0
10 µA
3.0 30 µA
2.0
10 20
50 100 200 500 1 k 2 k
f, FREQUENCY (Hz)
Figure 3. Noise Voltage
5 k 10 k
100
50 IC = 1.0 mA
20
10
5.0
300 µA
BANDWIDTH = 1.0 Hz
RS ≈ ∞
100 µA
2.0
1.0
0.5
0.2
0.1
10
30 µA
20 50
10 µA
100 200 500 1 k
f, FREQUENCY (Hz)
2k
Figure 4. Noise Current
5 k 10 k
NOISE FIGURE CONTOURS
(VCE = 5.0 Vdc, TA = 25°C)
500 k
200 k
100 k
50 k
20 k
10 k
5k
2k
1k
500
200
100
50
10
BANDWIDTH = 1.0 Hz
2.0 dB
3.0 dB 4.0 dB
6.0 dB
10 dB
20 30 50 70 100
200 300 500 700 1 k
IC, COLLECTOR CURRENT (µA)
Figure 5. Narrow Band, 100 Hz
1M
500 k
200 k
100 k
50 k
20 k
10 k
5k
2k
1k
500
200
100
10
BANDWIDTH = 1.0 Hz
1.0 dB
2.0 dB
3.0 dB
5.0 dB
8.0 dB
20 30 50 70 100
200 300 500 700 1 k
IC, COLLECTOR CURRENT (µA)
Figure 6. Narrow Band, 1.0 kHz
500 k
200 k
100 k
50 k
20 k
10 k
5k
2k
1k
500
200
100
50
10
10 Hz to 15.7 kHz
1.0 dB
2.0 dB
3.0 dB
5.0 dB
8.0 dB
20 30 50 70 100 200 300
IC, COLLECTOR CURRENT (µA)
Figure 7. Wideband
500 700 1 k
+ ǒ ) ) Ǔ ńNoise Figure is defined as:
NF
20 log10 en2
4KTRS In 2RS2 1 2
4KTRS
en = Noise Voltage of the Transistor referred to the input. (Figure 3)
In = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10–23 j/°K)
T = Temperature of the Source Resistance (°K)
RS = Source Resistance (Ohms)
Motorola Small–Signal Transistors, FETs and Diodes Device Data
3


3Pages


BCW60DLT1 電子部品, 半導体
BCW60ALT1 BCW60BLT1 BCW60DLT1
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07 0.05
0.05
0.02
0.03
0.02 0.01
SINGLE PULSE
0.01
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
FIGURE 19A
DUTY CYCLE, D = t1/t2
P(pk) D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
t1 READ TIME AT t1 (SEE AN–569)
t2
ZθJA(t) = r(t) RθJA
TJ(pk) – TA = P(pk) ZθJA(t)
5.0 10 20 50 100 200
t, TIME (ms)
500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
Figure 19. Thermal Response
104
VCC = 30 Vdc
103
102 ICEO
101
100 ICBO
AND
10–1 ICEX @ VBE(off) = 3.0 Vdc
10–2
–4 –2
00
0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
TJ, JUNCTION TEMPERATURE (°C)
Figure 19A.
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the model
as shown in Figure 19A. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 19 was calculated for various duty cycles.
To find ZθJA(t), multiply the value obtained from Figure 19 by the
steady state value RθJA.
Example:
The MPS3904 is dissipating 2.0 watts peak under the following
conditions:
t1 = 1.0 ms, t2 = 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of
r(t) is 0.22.
The peak rise in junction temperature is therefore
T = r(t) x P(pk) x RθJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
400
200
100
60
40
20
10
6.0
4.0
2.0
1.0 ms 100 µs
TC = 25°C
TA = 25°C
dc
10 µs
1.0 s
dc
TJ = 150°C
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
4.0 6.0 8.0 10
20
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 20.
40
The safe operating area curves indicate IC–VCE limits of the
transistor that must be observed for reliable operation. Collector load
lines for specific circuits must fall below the limits indicated by the
applicable curve.
The data of Figure 20 is based upon TJ(pk) = 150°C; TC or TA is
variable depending upon conditions. Pulse curves are valid for duty
cycles to 10% provided TJ(pk) 150°C. TJ(pk) may be calculated from
the data in Figure 19. At high case or ambient temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.
6 Motorola Small–Signal Transistors, FETs and Diodes Device Data

6 Page



ページ 合計 : 8 ページ
 
PDF
ダウンロード
[ BCW60DLT1 データシート.PDF ]


データシートを活用すると、その部品の主な機能と仕様を詳しく理解できます。 ピン構成、電気的特性、動作パラメータ、性能を確認してください。


共有リンク

Link :


部品番号部品説明メーカ
BCW60DLT1

General Purpose Transistors

Motorola  Inc
Motorola Inc


www.DataSheet.jp    |   2020   |  メール    |   最新    |   Sitemap